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SUMMARY

In many classes of applications like active vibration control and active noise control, the disturbances can
be characterized by their frequency content and their location in a specific region in the frequency domain.
The disturbances can be of narrow band type (simple or multiple) or of broad band type. A model can
be associated to these disturbances. The knowledge of this model allows to design an appropriate control
system in order to attenuate (or to reject) their effect upon the system to be controlled. The attenuation
of disturbances by feedback is limited by the Bode Integral and the ”water bed” effect upon the output
sensitivity function. In such situations, the feedback approach has to be complemented by a ”feedforward
disturbance compensation” requiring an additional transducer for getting information upon the disturbance.
Unfortunately in most of the situations the disturbances are unknown and time-varying and therefore an
adaptive approach should be considered. The generic term for adaptive attenuation of unknown and time-
varying disturbances is ”adaptive regulation” (known plant model, unknown and time-varying disturbance
model).
The paper will review a number of recent developments for adaptive feedback compensation of multiple
unknown and time-varying narrow band disturbances and for adaptive feedforward compensation of broad
band disturbances in the presence of the inherent internal positive feedback caused by the coupling
between the compensator system and the measurement of the image of the disturbance. Some experimental
results obtained on a relevant active vibration control system will illustrate the performance of the various
algorithms presented. Some open research problems will be mentioned in the conclusion. Copyright c© 2014
John Wiley & Sons, Ltd.
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1. INTRODUCTION

1.1. The problem

In many classes of applications like active vibration control (active suspension, control of disk
drives) and active noise control, the disturbances acting upon a system and which have to be
compensated (rejected, attenuated) can be characterized by their frequencies content and their
location in a specific region in the frequency domain. The disturbances can be of narrow band
type (simple or multiple) or of broad band type. Of course a combination of both is possible and
what we call broad band may be in certain cases finite band disturbances over a small region in the
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Figure 1. Adaptive feedforward compensation of unknown disturbances.

frequency domain. However the distinction between these two types of disturbances is convenient
in order to examine the techniques used for their compensation.

Fundamentally in active control a compensator system is introduced which will generate a
”secondary” source. This compensator (acting through ”secondary path”) conveniently driven will
interfere destructively with the disturbance coming from the ”original ” primary source (in general
non accessible) through which is called the ”primary path”. A common framework is the assumption
that the disturbance is the result of a white noise or a Dirac impulse passed through the model of
the disturbance. The knowledge of this model together with the knowledge of the model of the
secondary path (compensator) allows the design of an appropriate control strategy.

However in practice in most of the cases the characteristics of these disturbances are unknown or
time-varying. While in some particular cases a robust design can be considered [1, 2], in most of
the situations, as a consequence of the high level of attenuation requested, an adaptive approach is
necessary for obtaining a good tuning with respect to the disturbance characteristics.

When considering the model of a disturbance, one has to address two issues: 1) its structure
(complexity, order of the parametric model) and 2) the values of the parameters of the model. In
general, one can assess from data the structure for such model of disturbance (using spectral analysis
or order estimation techniques) and assume that the structure does not change. Therefore adaptation
will have to deal with the change in the parameters of the model of the disturbance.

1.2. The basic techniques

Historically, it seems that the first approach to be used systematically for disturbance compensation
was the adaptive feedforward approach [3]. Probably one of the first references is [4]. Fig. 1
illustrates the adaptive rejection of unknown disturbances by feedforward compensation. A “well
located” transducer can provide a measurement, highly correlated with the unknown disturbance (a
good image of the disturbance). This information is applied to the control input of the plant through
an adaptive filter whose parameters are adapted such that the effect of the disturbance upon the
output is minimized.

Adaptive feedforward vibration (or noise) compensation is currently used in ANC and AVC
when an image of the disturbance is available [5, 6, 7, 8]. However, at the end of the nineties
it was pointed out that in most of these systems there is a physical “positive” feedback coupling
between the compensator system and the measurement of the image of the disturbance (vibration
or noise) [8, 9, 6, 7, 10]. Nevertheless it is possible to achieve attenuation (rejection) of narrow
band disturbances using only a feedback approach (no need for a correlated measurement with the
disturbance). But since the model of the disturbance is unknown and/or time-varying an adaptive
feedback approach has to be used.

So at this point one can say that we have two types of disturbances

• Single or multiple narrow band disturbances:
• Broad (finite) band disturbances.

and two approaches for doing disturbance attenuation:
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ADAPTIVE ATTENUATION OF UNKNOWN AND TIME VARYING DISTURBANCES 3

• Adaptive feedforward compensation requiring an additional transducer for getting a correlated
measurement with the disturbance.
• Adaptive feedback approach (which requires only a measurement of the residual force,

acceleration, noise).

Lets assume for the moment that the disturbances are constant and that the models of the
disturbances have been identified. The question is: why use ”feedforward” compensation which
requires an additional transducer some times difficult to place and which may be subject to an
inherent physical positive feedback leading to stability problems? The answer comes from the Bode
Integral of the output sensitivity function (the transfer function between the disturbance and the
output of the system). Since the objective is to strongly attenuate (even reject totally asymptotically)
the disturbance, this may require significative holes in the magnitude of the sensitivity function
which in turn (even with a very careful design) may lead to unacceptable ”water bed” effect both
in terms of performance (one amplifies at certain frequencies where some disturbance can still
be present) as well as in terms of robustness (the modulus margin may become unacceptable1).
Basically narrow band disturbances can be rejected by feedback up to a certain number (at least 3 -
see [12]). Finite band disturbances enough ”narrow” can also be handled by feedback only. However
broad band disturbance attenuation will require to use adaptive feedforward compensation despite
the difficulties indicated earlier. In fact the good approach is to do as much as possible by feedback
and add on top the feedforward compensation.

1.3. A conceptual feedback framework

Fig. 2 represents an active noise and vibration control (ANVC) system using both feedforward
and feedback compensators. The system has two inputs and two outputs. The first input is the
disturbance w(t) which is generated by the unknown disturbance source s(t) passed through a
filter with unknown characteristics. The second input is the control signal, u(t). The first output
is the measurement of the residual acceleration (force, noise) e(t) (also called the performance
variable) and the second output is a signal correlated with the unknown disturbance, y1(t) in Fig. 2.
This correlation is a result of the physical characteristics of the system. As shown in Fig. 2, the
path that transmits the filtered disturbance, w(t), to the residual acceleration is called the primary
path. The control signal, on the other hand, is transmitted to the residual acceleration through the
secondary path. The residual acceleration (performance variable) is formed by addition between
the output of the primary path, denoted x(t), and the output of the secondary path, denoted z(t).
ANVC systems present in general also positive coupling path (also called reverse path) between
the control signal u(t) and the measured y1(t), which is shown in Fig. 2. This results in an internal
positive feedback which can destabilize the ANVC system if not taken into account. The objective is
that of minimizing the performance variable, e(t), by computing an appropriate control, u(t), based
on the measurements e(t) and y1(t). One can see that, in the control system architecture presented
in Fig. 2, the control signal u(t) is obtained by the subtraction between the feedforward control,
u1(t), and the feedback control, u2(t). The measurements obtained from the system can be put into
a vector form as y(t) = [y1(t), y2(t)]

T = [y1(t), e(t)]
T . As a consequence, the controller also has

a vector representation κ = [N, −K]T , where N and K denote respectively the feedforward and
the feedback compensators2. With these notations, the equation relating the measurements to the
control signal is given by

u(t) = u1(t)− u2(t) = N · y1(t)−K · y2(t) = κT · y(t). (1)

The feedforward controller denomination attributed to N is motivated by the fact that y1(t), also
called correlated image of the disturbance, is measured upstream of the performance variable. This

1The modulus margin is the minimum distance between the open loop transfer function hodograph and the Nyquist point
[11].
2Both feedforward compensator and feedback compensator may have a more complex structure using for example Youla-
Kučera parametrization. Feedback controller may include explicitly a disturbance observer.
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Figure 2. Block diagram representation of the combined feedforward-feedback control problem.

assumes also that it is physically possible to obtain such a measurement. The situations where this
is not possible constitute feedback control problems, while the others are more generally addressed
in the literature as hybrid control. A standard feedback representation in the form of a 2 inputs - 2

Figure 3. Generalized ANVC system representation.

outputs system can also be considered as shown in Fig. 3. This representation is very well known
in robust and optimal control (see also [13]). The equations associated with the feedback system
representation are

[
e(t)
y(t)

]
=

[
P11 P12

P21 P22

] [
w(t)
u(t)

]
=

 D G
1 M
D G

[w(t)
u(t)

]
, (2)

where D, G and M correspond to the models of the primary, secondary and reverse paths. The
control is given by (1).

1.4. The adaptive regulation paradigm

Consider the case of attenuation (rejection) of disturbances by feedback only. Since the parameters
of the disturbance model are unknown and/or time-varying in order to get satisfactory performance
an adaptive feedback approach has to be considered. The classical adaptive control paradigm deals
essentially with the construction of a control law when the parameters of the plant dynamic model
are unknown and time-varying ([10]). However, in the present context, the plant dynamic model
is almost invariant and it can be identified. The objective then is the rejection of disturbances
characterized by unknown and time-varying disturbance models. It seems reasonable to call this
paradigm adaptive regulation. It is also assumed that the possible small variations or uncertainties
of the plant model can be handled by a robust control design. The problem of adaptive regulation
as defined above has been previously addressed in a number of papers ([14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24]) among others. [12] presents a survey of the various techniques (up to 2010) used in
adaptive regulation as well as a review of a number of applications.

An international benchmark has been organized on the attenuation of multiple and unknown time
varying narrow band disturbances. The test bed was an active vibration control system. The results
are summarized in [25]. However the adaptive regulation covers also the case of feedforward since
on one hand adaptation has to deal with the change in the characteristics of the disturbances and on
the other hand it is still a feedback structure as shown before.
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The paper is organized as follows. Section 2 will present an active vibration control system used
to test the various algorithms for disturbance attenuation which will be presented in the paper.
Section 3 will review some basic algorithms for the attenuation of multiple unknown an time varying
narrow band disturbances. Section 4 will present an experimental comparison of the performance
obtained with the direct an indirect adaptive regulation approach. Section 5 will discuss the adaptive
attenuation of broad band disturbances by feedforward and feedback. Section 6 gives a summary of
experimental results for attenuation of broad band disturbances using adaptive feedforward with or
without additional feedback control.

2. AN ACTIVE VIBRATION CONTROL SYSTEM USING AN INERTIAL ACTUATOR

Figure 4. An AVC system using a feedforward compensation - photo.
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Figure 5. An AVC system using feedforward and feedback compensation - block diagram.

Figs. 4 and 5 show an AVC system applied to a distributed flexible mechanical structure. The
corresponding block diagram is shown in Fig. 2. This mechanical structure is representative for a
number of situations encountered in practice and will be used to illustrate the performance of the
various algorithms which will be presented in this paper.
It consists of five metal plates connected by springs. The uppermost and lowermost ones are rigidly
jointed together by four screws. The middle three plates will be labeled for easier referencing M1,
M2 and M3 (see Fig. 5). M1 and M3 are equipped with inertial actuators. The one on M1 serves
as disturbance generator (inertial actuator I in Fig. 5), the one at the bottom serves for disturbance
compensation (inertial actuator II in Fig. 5). Inertial actuators use a similar principle as loudspeakers
(see [26, 12]). The correlated measurement with the disturbance (image of the disturbance) is
obtained from an accelerometer which is positioned on plate M1. Another sensor of the same type is
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6 I. D. LANDAU ET AL.

positioned on plate M3 and serves for measuring the residual acceleration (see Fig. 5). The objective
is to minimize the residual acceleration measured on plate M3.

The disturbance is the position of the mobile part of the inertial actuator (see Figs. 4 and 5)
located on top of the structure. The input to the compensator system is the position of the mobile
part of the inertial actuator located on the bottom of the structure. When the compensator system is
active, the actuator acts upon the residual acceleration, but also upon the measurement of the image
of the disturbance through the reverse path (a positive feedback coupling). The measured quantity
ŷ1(t) will be the sum of the correlated disturbance measurement w(t) obtained in the absence of the
feedforward compensation (see Fig. 6(a)) and of the effect of the actuator used for compensation.
This is illustrated in Fig. 7 by the spectral densities of y1(t) in open loop and when feedforward
compensation is active (the effect of the mechanical feedback is significant). The corresponding
block diagrams, in open loop operation and with the adaptive compensator system, are shown in
Figs. 6(a) and 6(b), respectively.

D =
q−dDBD
AD

, G =
q−dGBG
AG

,M =
q−dMBM
AM

(3)

represent the transfer operators associated with the primary (D), secondary (G) and reverse (M)
paths (all asymptotically stable), with

BX(q−1) = bX1 q
−1 + ...+ bXnBX

q−nBX = q−1B∗X(q−1), (4)

AX(q−1) = 1 + aX1 q
−1 + ...+ aXnAX

q−nAX . (5)

for X ∈ D,G,M and dX is the plant pure time delay in number of sampling periods3.
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Figure 6. Feedforward AVC: (a) in open loop and (b) with adaptive feedforward + fixed feedback
compensator.

The frequency characteristics of the identified models of the primary path, secondary path and
reverse path are shown in Fig. 8. The system shown in Fig. 6(b) can be represented in the standard
feedback form shown in Fig. 3.

At this stage it is important to make the following remarks:

3The complex variable z−1 will be used to characterize the system’s behaviour in the frequency domain and the delay
operator q−1 will be used for the time domain analysis.
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Figure 7. Spectral densities of the image of the disturbance y1 in open loop and when feedforward
compensation scheme is active (experimental).
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• very reliable models for the secondary path and the ”positive” feedback path can be identified;
• design of a fixed model based stabilizing feedforward compensator requires the knowledge of

the reverse path model only;
• knowledge of the disturbance characteristics and of the primary, secondary and reverse paths

models is mandatory for the design of an optimal fixed model based feedforward compensator
([1, 2]);
• adaptation algorithms do not use information neither upon the primary path whose

characteristics may be unknown nor upon the disturbance characteristics.

3. ADAPTIVE FEEDBACK ATTENUATION OF MULTIPLE UNKNOWN AND
TIME-VARYING NARROW BAND DISTURBANCES

3.1. Background

The objective is to reject asymptotically or strongly attenuate multiple narrow band disturbances
which have unknown or time-varying spikes in the frequency domain. To asymptotically reject the
disturbance, the Internal Model Principle (IMP) has to be applied. As a consequence, the controller
should include a model of the disturbance. Since the disturbances are unknown, two approaches can
be considered:

• Indirect adaptive control (one has to identify the model of the disturbance and recompute the
controller which will include the estimated model of the disturbance).
• Direct adaptive control (the controller parameters will be directly adapted).

Furthermore for the indirect case one has to construct an observer for the disturbance. An important
issue is the tuning of the controller as a function of the model of the disturbance but without
affecting the stability of the closed loop. It turns out that Youla-Kučera parametrization provides
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8 I. D. LANDAU ET AL.

the good parametrization of the controller and provides also a good configuration for obtaining
a disturbance observer. It also makes possible to build a direct adaptive regulation scheme where
the number of parameters to adapt depends upon the complexity of the disturbance (number of
spikes) and not upon the complexity of the secondary path model. However since the Youla-Kučera
parametrization is not unique different adaptive controller configurations will be obtained depending
on the parametrization used [25].

3.2. Controller structure

The structure of the LTI discrete time model of the plant, also called secondary path (G), used for
controller design is given in (3), (4) and (5). For simplifying the writing one takes dG = d. The

Figure 9. Direct adaptive regulation scheme for rejection of unknown disturbances.

output of the plant y(t) and the input u(t) in the absence of the Youla-Kučera filters, may be written
as (consider Fig. 9 without the filter Q̂):

y(t) =
q−dBG(q

−1)

AG(q−1)
· u(t) + p(t), (6)

S0(q
−1) · u(t) = −R0(q

−1) · y(t). (7)

In (6), p(t) is the effect of the disturbances on the measured output4 and R0(z
−1), S0(z

−1) are
polynomials in z−1 having the following expressions5:

S0 = 1 + s01z
−1 + . . .+ s0nS0

z−nS0 = S′0(z
−1) ·HS0(z

−1), (8)

R0 = r00 + r01z
−1 + . . .+ r0nR0

z−nR0 = R′0(z
−1) ·HR0(z

−1), (9)

where HS0(q
−1) and HR0(q

−1) represent pre-specified parts of the controller (used for example
to incorporate the internal model of a disturbance or to open the loop at certain frequencies) and
S′0(q

−1) and R′0(q
−1) are computed. The characteristic polynomial, which specifies the desired

closed loop poles of the system is given by:6 (see also [11]).

P0(z
−1) = AG(z

−1)S0(z
−1) + z−dBG(z

−1)R0(z
−1), (10)

In what follows the Youla-Kučera parametrization ([27, 28]) is used. However the Youla-Kučera
parametrization is not unique, it depends on the right coprime factorization selected G = ND−1.
Four factorization are mostly used [25]:

N = G; D = I. (11)

4The disturbance passes through a so called primary path which is not represented in this figure, and p(t) is its output.
5The argument (z−1) will be omitted in some of the following equations to make them more compact.
6It is assumed that a reliable model identification is achieved and therefore the estimated model is assumed to be equal
to the true model.
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ADAPTIVE ATTENUATION OF UNKNOWN AND TIME VARYING DISTURBANCES 9

N = z−m; D = Pm with G ≈ z−mP−1m . (12)

N = q−dBG; D = AG with G = q−d
BG
AG

. (13)

N = q−dBGF ;D = AGF with G = q−d
BG
AG

;F =
FN
FD

, (14)

with F and F−1 asymptotically stable. More details can be found in [25]. We will consider
subsequently the parametrization (13).

Selecting a FIR structure for the Q filter associated to the Youla-Kučera parametrization, the
controller’s polynomials become:

R = R0 +AGQHS0HR0 , (15)

S = S0 − z−dBGQHS0HR0 , (16)

whereR0 and S0 define the central controller which verifies the desired specifications in the absence
of the disturbance. The characteristic polynomial of the closed loop is still given by (10). We define
the output sensitivity function (the transfer function between the disturbance p(t) and the output of
the system y(t)) as

Syp(z
−1) =

AG(z
−1)S(z−1)

P0(z−1)
(17)

and the input sensitivity function (the transfer function between the disturbance p(t) and the control
input u(t)) as

Sup(z
−1) = −AG(z

−1)R(z−1)

P0(z−1)
, (18)

3.3. Direct adaptive regulation using Youla-Kučera parametrization

A key aspect of this methodology is the use of the Internal Model Principle (IMP). It is supposed
that p(t) is a deterministic disturbance given by

p(t) =
Np(q

−1)

Dp(q−1)
· δ(t), (19)

where δ(t) is a Dirac impulse and Np, Dp are coprime polynomials of degrees nNp
and nDp

,
respectively7. In the case of stationary narrow-band disturbances, the roots of Dp(z

−1) are on the
unit circle.

Internal Model Principle [10]: The effect of the disturbance given in (19) upon the output is
given by

y(t) =
AG(q

−1)S(q−1)

P (q−1)
· Np(q

−1)

Dp(q−1)
· δ(t), (20)

where Dp(z
−1) is a polynomial with roots on the unit circle and P (z−1) is an asymptotically stable

polynomial. y(t) in 20 converges asymptotically towards zero iff the polynomial S(z−1) in the RS
controller has the form (based on eq. (8))

S(z−1) = Dp(z
−1)HS0(z

−1)S′(z−1). (21)

Thus, the pre-specified part of S(z−1) should be chosen as HS(z
−1) = Dp(z

−1)HS0(z
−1) and the

controller is computed solving

P = AGDpHS0S
′ + z−dBGHR0R

′, (22)

7Throughout the paper, nX denotes the degree of the polynomial X .
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10 I. D. LANDAU ET AL.

where P , Dp, AG, BG, HR0
, HS0

and d are given8.
For the purpose of direct adaptive regulation,Q(z−1) is considered to be a FIR filter (AQ(z−1) =

1 and Q(z−1) = BQ(z
−1))

Q(z−1) = q0 + q1z
−1 + . . .+ qnQ

z−nQ . (23)

To compute Q(z−1) in order that the polynomial S(z−1) given by (16) incorporates the internal
model of the disturbance (21), one has to solve the diophantine equation

S′Dp + z−dBGHR0Q = S′0, (24)

where Dp, d, BG, S′0, and HR0
are known and S′ and Q are unknown. Eq. (24) has a unique

solution for S′ and Q with: nS′0 ≤ nDp
+ nBG

+ d+ nHR0
− 1, nS′ = nBG

+ d+ nHR0
− 1,

nQ = nDp − 1. One sees that the order nQ of the polynomial Q depends upon the structure of
the disturbance model. The use of the Youla-Kučera parametrization, with Q given in (23), is
interesting in this case because it allows to maintain the closed loop poles as given by the central
controller but at the same time introduces the parameters of the internal model into the controller.
To build the parametric adaptation algorithm (PAA), one has to find first an error equation (see also
[28, 19, 29]). Using the Q-parametrization, the output of the system in the presence of a disturbance
can be expressed as

y(t) =
AG[S0 − q−dBGHS0HR0Q]

P
· Np
Dp
· δ(t) = S0 − q−dBGHS0HR0Q

P
· w(t), (25)

where w(t) is given by (see also Fig. 9)

w(t) =
AGNp
Dp

· δ(t) = AG · y(t)− q−d ·BG · u(t). (26)

Taking into consideration that the adaptation of Q is done in order to obtain an output y(t) which
tends asymptotically to zero, one can define ε0(t+ 1) as the value of y(t+ 1) obtained with
Q̂(t, q−1) (the estimate of Q at time t, written also Q̂(t))

ε0(t+ 1) =
S0

P
· w(t+ 1)− Q̂(t)

q−dB∗GHS0HR0

P
· w(t). (27)

Similarly, the a posteriori error becomes (using Q̂(t+ 1)) as9.

ε(t+ 1) =
S0

P
· w(t+ 1)− Q̂(t+ 1)

q−dB∗GHS0HR0

P
· w(t). (28)

Replacing S0 from the last equation by (24), one obtains

ε(t+ 1) = [Q− Q̂(t+ 1)] · q
−dB∗GHS0HR0

P
· w(t) + v(t+ 1), (29)

where

v(t) =
S′DpHS0

P
· w(t) = S′HS0AGNp

P
· δ(t) (30)

is a signal which tends asymptotically towards zero. Define the estimated polynomial Q̂(t, q−1) =

q̂0(t) + q̂1(t)q
−1 + . . .+ q̂nQ

(t)q−nQ and the associated estimated parameter vector θ̂(t) =

8Of course, it is assumed that Dp and BG do not have common factors.
9In adaptive control and estimation the predicted output at t+ 1 can be computed either on the basis of the previous
parameter estimates (a priori, time t) or on the basis of the current parameter estimates (a posteriori, time t+ 1).
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ADAPTIVE ATTENUATION OF UNKNOWN AND TIME VARYING DISTURBANCES 11

[q̂0(t) q̂1(t) . . . q̂nQ
(t)]T . Define the fixed parameter vector corresponding to the optimal value

of the polynomial Q as: θ = [q0 q1 . . . qnQ
]T .

Denote

w2(t) =
q−dB∗GHS0HR0

P
· w(t) (31)

and define the following observation vector

φT (t) = [w2(t) w2(t− 1) . . . w2(t− nQ)]. (32)

Eq. (29) becomes
ε(t+ 1) = [θT − θ̂T (t+ 1)] · φ(t) + v(t+ 1). (33)

One can remark that ε(t+ 1) corresponds to an a posteriori adaptation error ([10]).
From eq. (27), one obtains the a priori adaptation error

ε0(t+ 1) = w1(t+ 1)− θ̂T (t)φ(t), (34)

with

w1(t+ 1) =
S0(q

−1)

P (q−1)
· w(t+ 1), (35)

w(t+ 1) = AG(q
−1) · y(t+ 1)− q−dB∗G(q−1) · u(t), (36)

where BG(q−1)u(t+ 1) = B∗G(q
−1)u(t).

The a posteriori adaptation error is obtained from (28)

ε(t+ 1) = w1(t+ 1)− θ̂T (t+ 1)φ(t). (37)

For the estimation of the parameters of Q̂(t, q−1) the following PAA is used ([10]):

θ̂(t+ 1) = θ̂(t) + F (t)φ(t)ε(t+ 1), (38)

ε(t+ 1) =
ε0(t+ 1)

1 + φT (t)F (t)φ(t)
, (39)

ε0(t+ 1) = w1(t+ 1)− θ̂T (t)φ(t), (40)

F (t+ 1) =
1

λ1(t)

F (t)− F (t)φ(t)φT (t)F (t)
λ1(t)
λ2(t)

+ φT (t)F (t)φ(t)

 , (41)

1 ≥ λ1(t) > 0, 0 ≤ λ2(t) < 2, (42)

where λ1(t), λ2(t) allow to obtain various profiles for the evolution of the adaption gain F (t) (for
details see [10, 11]). For a stability proof under the hypothesis model=plant10see [19]

3.4. Robustness considerations

To avoid unacceptable high values of the modulus of the output sensitivity function when internal
model principle is used, a robust control design should be considered assuming that the model of
the disturbance and its domain of variation in the frequency domain are known. The objective is that
for all situations, acceptable modulus margin (|Syp(e−jω)|−1max) and delay margin are obtained.

Furthermore, at the frequencies where perfect rejection of the disturbance is achieved one has
Syp(e

−jω) = 0 and ∣∣Sup(e−jω)∣∣ = ∣∣∣∣AG(e−jω)BG(e−jω)

∣∣∣∣ . (43)

10No positive real condition required for asymptotic stability.
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12 I. D. LANDAU ET AL.

Equation (43) corresponds to the inverse of the gain of the system to be controlled. The implication
of equation (43) is that cancelation (or in general an important attenuation) of disturbances on the
output should be done only in frequency regions where the system gain is large enough. If the gain
of the controlled system is too low, |Sup|will be large at these frequencies. Therefore, the robustness
versus additive plant model uncertainties will be reduced and the stress on the actuator will become
important [12].

3.5. Indirect Adaptive Regulation Based on Shaping of the Output Sensitivity Function

The purpose of this method is to allow the possibility of choosing the desired attenuation and
bandwidth of attenuation for each of the estimated narrow-band disturbances and as a consequence
to reduce the ”water bed” effect on the output sensitivity function with respect to the IMP approach.
This is achieved by the shaping of the output sensitivity function.

The design uses Band Stop Filters (BSFs) to shape the output sensitivity function. Following
[11, 30], there exist digital filters11 HSi

PFi
, which will assure the desired attenuation of a narrow-band

disturbance (i ∈ {1, . . . , n} and n =
nDp

2 from the previous section). The structure of the BSFs is

SBSFi(z
−1)

PBSFi(z
−1)

=
1 + βi1z

−1 + βi2z
−1

1 + αi1z
−1 + αi2z

−1 , (44)

resulting from the discretization of a continuous filter (see also [30, 11])

Fi(s) =
s2 + 2ζniωis+ ω2

i

s2 + 2ζdiωis+ ω2
i

(45)

using the bilinear transformation. This filter introduces an attenuation of

Mi = −20 · log10
(
ζni

ζdi

)
(46)

at the frequency ωi. Positive values of Mi denote attenuations (ζni < ζdi).
Under the hypothesis that the plant model parameters are constant and that an accurate

identification experiment can be run, a reliable estimate p̂(t) of the disturbance signal can be obtain
by using the disturbance observer

p̂(t+ 1) = y(t+ 1)− q−dB
∗
G(q
−1)

AG(q−1)
u(t). (47)

The signal p̂(t) can then be used to estimate the spike frequencies (ω̂i) with adaptive notch filters
(ANF) as described in [31, 32].
Remark: The design parameters for each BSF are the desired attenuation (Mi), the central frequency
of the filter (ω̂i) and the damping of the denominator (ζdi). The denominator damping is used to
adjust the frequency bandwidth of the BSF.
For n narrow-band disturbances, n BSFs will be used

HBSF (z
−1) =

SBSF (z
−1)

PBSF (z−1)
=

∏n
i=1 SBSFi(z

−1)∏n
i=1 PBSFi(z

−1)
. (48)

S(z−1) and R(z−1) are obtained as solutions of the Bezout equation

P (z−1) = AG(z
−1)S(z−1) + z−dBG(z

−1)R(z−1), (49)

11The numerators of these filters will be implemented in the controller while the denominators will define additional
closed loop poles.
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ADAPTIVE ATTENUATION OF UNKNOWN AND TIME VARYING DISTURBANCES 13

where
R(z−1) = HR(z

−1)R′(z−1), S(z−1) = HS(z
−1)S′(z−1), (50)

and P (z−1) is given by
P (z−1) = P0(z

−1)PBSF (z
−1). (51)

In the last equation, PBSF is the combined denominator of all the BSFs, (48), and P0 was defined
in (10). The fixed part of the controller denominator HS is in turn factorized into

HS(z
−1) = SBSF (z

−1)HS0
(z−1), (52)

where SBSF is the combined numerator of the BSF, (48), and HS0 has been introduced in (8). It is
easy to see that the output sensitivity function becomes

Syp(z
−1) =

AG(z
−1)S′(z−1)HS0(z

−1)SBSF (z
−1)

P0(z−1)PBSF (z−1)
(53)

and the shaping effect of the BSFs upon the sensitivity functions is obvious.
The unknowns S′ and R′ are solutions of

P (z−1) =P0(z
−1)PBSF (z

−1)

=AG(z
−1)HS(z

−1)S′(z−1) + z−dBG(z
−1)HR0(z

−1)R′(z−1) (54)

and can be computed by putting (54) into matrix form (see also [11]). The size of the matrix equation
that needs to be solved is given by

nBez = nAG
+ nBG

+ d+ nHS0
+ nHR0

+ 2 · n− 1, (55)

where nAG
, nBG

, and d are respectively the order of the plant’s model denominator, numerator, and
delay, nHS0

and nHR0
are the orders of HS0

(z−1) and HR0
(z−1) respectively and n is the number

of narrow-band disturbances.
The computational complexity related to the Bezout equation (54) is significant. However, using

the Youla-Kučera parametrization an important reduction of the computation load can be obtained.
Details can be found in [33].

In order to use the proposed control strategy in the presence of unknown and/or time-varying
narrow-band disturbances, one needs an estimation in real time of the spikes’ frequencies in the
spectrum of the disturbance. In the framework of narrow-band disturbance rejection, it is usually
supposed that the disturbances are in fact sinusoidal signals with variable frequencies. An estimator
of the spikes frequency can then be used. However in order to do this an observer for the disturbance
has to be built as indicated in eq. (47). Combining the control procedure presented above with a
spikes frequency estimator an indirect adaptive regulation scheme is obtained. A stability analysis
of the full scheme is available in [34].

4. SOME EXPERIMENTAL RESULTS - ATTENUATION OF MULTIPLE NARROW BAND
DISTURBANCES

Performance of some algorithms for adaptive attenuation of unknown and time-varying disturbances
will be illustrated on the experimental platform described in Section 2.

Adaptive feedback attenuation of unknown and time-varying multiple narrow band disturbances
Attenuation of unknown and time-varying multiple narrow band disturbances by adaptive feedback
will be illustrated next using the direct adaptive approach using IMP presented in Subsection 3.3
and the indirect adaptive approach using shaping of the output sensitivity function presented in
Subsection 3.5. Two tests were considered for the case of 3 sinusoidal disturbances: i) a constant
disturbance frequency and ii) a variable disturbance frequency. The first one is used for a steady state
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14 I. D. LANDAU ET AL.

Three sinusoids: 55− 75− 95 Hz

Measurement GA DA MA

Units dB dB dB dB dB Hz

Direct 41.33 45.01 47.98 45.25 14.39 164.10

Indirect 45.40 56.35 45.06 57.72 11.72 65.63
Table I. Constant Disturbance Frequency - Adaptive feedback attenuation

performance comparison and the second for a transient performance comparison. Table I shows
the results obtained once the adaptation is settled, for a constant disturbance frequency. Global
Attenuation (GA), Disturbance Attenuation (DA), Maximum Amplification (MA) are evaluated.
The indirect adaptive approach shows better global attenuation and disturbance attenuation with
lower maximum amplification. In Fig. 10, the power spectral density (PSD) estimates for 55, 75
and 95 Hz disturbance are shown (computed after the adaptation process has converged towards an
almost constant controller). The indirect adaptive algorithm of [34] introduces a larger attenuation
of the spikes, having a lower maximum amplification as the direct adaptive algorithm, this is due to
the introduction of low damped complex poles in order to minimize the ”water bed” effect over the
output sensitivity function. In Fig. 11, the effects of three sequences of multi-sinusoidal disturbances
applied to the primary path are shown. Their corresponding frequencies are indicated in each of the
figures. The signal on top represent the effect of the disturbance upon the residual acceleration in
open loop operation when a variable disturbance frequency is used, the one in the middle correspond
to the residual acceleration in closed loop with the indirect adaptive algorithm using BSF algorithm
and the one on the bottom are the residual accelerations obtained with the direct adaptive IMP
algorithm. The transients duration for IMP is slightly shorter than for BSF.
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Figure 10. PSD comparison between the open loop measured disturbance and the residual accelerations
obtained with direct and indirect adaptation .

The performances of the two schemes depend also on how the central controller is designed.
The indirect approach is less sensitive with respect to the design of the central controller. Further
details concerning the design of the central controller for this these two schemes can be found in
[35, 33]. It has to ne noted that the computation load is significantly more important for the indirect
approach than for the direct approach. For further comparison of the two approaches in the context
of a benchmark problem (an active suspension system), see [25].
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Figure 11. Performance comparison in the presence of a three sinusoidal disturbances.

5. ADAPTIVE FEEDFORWARD + FIXED FEEDBACK COMPENSATION OF BROAD BAND
DISTURBANCES

For broad band disturbance attenuation the use of the feedforward compensation is mandatory (as
explained in the Introduction). However adding feedback should improve the global performance.
Of course the algorithms for the hybrid feedforward+feedback control can be particularized for the
case without feedback control.

5.1. Basic Equations and Notations

The block diagram associated with an AVC system using an hybrid (feedback + adaptive
feedforward) control is shown in Fig. 6. The transfer operators characterizing the primary path
(D), the secondary path (G) and the reverse path (M) are given in (3), (4) and (5). To simplify the
writing, the delay dX is incorporated in BX where X ∈ D,G,M .
The optimal feedforward filter (unknown) is defined by

N(q−1) =
R(q−1)

S(q−1)
, (1)

where
R(q−1) = r0 + r1q

−1 + ...+ rnR
q−nR , (2)

S(q−1) = 1 + s1q
−1 + ...+ snS

q−nS = 1 + q−1S∗(q−1). (3)

The estimated feedforward filter is denoted by

N̂(q−1) =
R̂(q−1)

Ŝ(q−1)
. (4)

The vector of optimal feedforward filter parameters is

θT = [s1, . . . snS
, r0, . . . rnR

]T (5)
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16 I. D. LANDAU ET AL.

and the vector of estimated feedforward filter coefficients is

θ̂T (t) = [ŝ1(t), . . . ŝnS
(t), r̂0(t), . . . r̂nR

(t)]T . (6)

The fixed RS controller K, computed on the basis of the model Ĝ to reject broadband disturbances
on the output e(t), is characterized by the asymptotically stable transfer function

K(q−1) =
BK(q−1)

AK(q−1)
, (7)

where
BK(q−1) = bK0 + bK1 q

−1 + ...+ bKnBK
q−nBK , (8)

AK(q−1) = 1 + aK1 q
−1 + ...+ aKnAK

q−nAK . (9)

The input of the feedforward filter (called also reference) is denoted by ŷ1(t) and it corresponds
to the measurement provided by the primary transducer (force or acceleration transducer in AVC
or a microphone in ANC). The output of the feedforward compensator is denoted by û1(t+ 1) =

û1(t+ 1|θ̂(t+ 1)) (a posteriori output). The measured input to the feedforward filter can also be
written as

ŷ1(t+ 1) = w(t+ 1) +
B∗M (q−1)

AM (q−1)
û(t), (10)

where
û = û1(t)− u2(t), (11)

û1(t) and u2(t) are the outputs given by the adaptive feedforward and the fixed feedback
compensator, respectively. û is the effective input sent to the control actuator.

The a priori output of the estimated feedforward filter is given by

û01(t+ 1) = û1(t+ 1|θ̂(t)) = −Ŝ∗(t, q−1)û1(t) + R̂(t, q−1)ŷ1(t+ 1)

= θ̂T (t)φ(t) =
[
θ̂TS (t), θ̂

T
R(t)

] [
φû1

(t)
φŷ1(t)

]
(12)

where θ̂T (t) has been given in (6) and

φT (t) = [−û1(t), . . .− û1(t− nS + 1), ŷ1(t+ 1), . . . ŷ1(t− nR + 1)] = [φTû1
(t), φTŷ1(t)] (13)

The input to the feedback (fixed) compensator is given by the performance variable, therefore
y2(t) = e(t). Its output will be u2(t) = K · y2(t). The unmeasurable value of the output of the
primary path (when the compensation is active) is denoted x(t). The a priori output of the secondary
path is denoted ẑ0(t+ 1) = ẑ(t+ 1|θ̂(t)) while its input is û(t). One has

ẑ0(t+ 1) =
B∗G(q

−1)

AG(q−1)
û(t) =

B∗G(q
−1)

AG(q−1)
û(t|θ̂(t)). (14)

The measured residual acceleration (or force) satisfies the following equation

e0(t+ 1) = x(t+ 1) + ẑ0(t+ 1). (15)

The a priori and a posteriori adaptation error are defined as

ε0(t+ 1) = ε(t+ 1|θ̂(t)) = −e0(t+ 1) (16)

and
ε(t+ 1) = ε(t+ 1|θ̂(t+ 1)) = −e(t+ 1) = −x(t+ 1)− ẑ(t+ 1) (17)

where the a posteriori value of the output of the secondary path ẑ(t+ 1) (dummy variable) is given
by

ẑ(t+ 1) = ẑ(t+ 1|θ̂(t+ 1)) =
B∗G(q

−1)

AG(q−1)
û(t|θ̂(t+ 1)). (18)

For compensators with constant parameters ε0(t) = ε(t), e0(t) = e(t), ẑ0(t) = ẑ(t), û0(t) = û(t).
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5.2. Development of the Algorithms

The algorithms for adaptive feedforward compensation in presence of feedback controller have been
developed under the following hypotheses [36]:

H1) The signal w(t) is bounded, i.e.,

|w(t)| ≤ α, ∀t (0 ≤ α <∞) (19)

H2) Perfect matching condition - There exists a filter N(q−1) of finite dimension such that

N(z−1)

1−N(z−1)M(z−1)
G(z−1) = −D(z−1) (20)

and the characteristic polynomials:

• of the ”internal” positive coupling loop

P (z−1) = AM (z−1)S(z−1)−BM (z−1)R(z−1), (21)

• of the closed loop (G-K)

Pcl(z
−1) = AG(z

−1)AK(z−1) +BG(z
−1)BK(z−1), (22)

• and of the coupled feedforward-feedback loop

Pfb−ff = AMS[AGAK +BGBK ]−BMRAKAG (23)

are Hurwitz polynomials.
H3) Deterministic context - The effect of the measurement noise upon the measured residual error

is neglected.
H4) The primary path model D(z−1) is unknown and constant.

Under hypotheses H1, H2, H3 and H4, for the system described in subsection 5.1 using a
feedforward compensator N̂ with constant parameters and a feedback controller K, one obtains
the following expression for the residual acceleration [37]:

ε(t+ 1) =
AMAGAKG

Pfb−ff
[θ − θ̂]Tφ(t) (24)

where
θT = [s1, ...snS

, r0, r1, ...rnR
] = [θTS , θ

T
R] (25)

is the vector of parameters of the optimal filter N assuring perfect matching,

θ̂T = [ŝ1...ŝnS
, r̂0...r̂nR

] = [θ̂TS , θ̂
T
R] (26)

is the vector of constant estimated parameters of N̂ ,

φT (t) = [−û1(t), . . .− û1(t− nS + 1), ŷ1(t+ 1), . . . ŷ1(t− nR + 1)] = [φT
û1
(t), φT

ŷ1
(t)] (27)

and ŷ1(t+ 1) is given by eq. (10).
Of course this expression can be particularized for the case without internal positive coupling

(BM = 0) and for the case of the absence of feedback (K = 0).
Filtering the vector φ(t) through an asymptotically stable filter L(q−1) = BL

AL
, equation (24) for

θ̂ = constant becomes:
ε(t+ 1) =

AMAGAKG

Pfb−ffL
[θ − θ̂]Tφf (t) (28)

φf (t) = L(q−1)φ(t). (29)
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Equation (28) has been used to develop the adaptation algorithms neglecting the non-commutativity
of the operators when θ̂ is time-varying (however an exact algorithm can be derived in such cases -
see [10]).

Replacing the fixed estimated parameters by the current estimated parameters, equation (28)
becomes the equation of the a-posteriori residual (adaptation) error ε(t+ 1) (which is computed):

ε(t+ 1/θ̂(t+ 1)) =
AMAGAK
Pfb−ffL

G[θ − θ̂(t+ 1)]Tφf (t). (30)

Equation (30) has the standard form for an a-posteriori adaptation error ([10]), which immediately
suggests to use the same parametric adaptation algorithm given in equations (38) through (41). The
stability of the algorithm has been analyzed in [37]

5.3. Analysis of the Algorithms

The equation for the a-posteriori adaptation error has the form

ε(t+ 1) = H(q−1)[θ − θ̂(t+ 1)]Tψ(t) (31)

where:
H(q−1) =

AMAGAK
Pfb−ffL

G, ψ = φf . (32)

Neglecting the non-commutativity of time-varying operators, one has the following result [36]:
Lemma 4.1: Assuming that eq. (31) represents the evolution of the a posteriori adaptation error

and that the parameter adaptation algorithm (38) through (41) is used, one has:

lim
t→∞

ε(t+ 1) = 0 (33)

lim
t→∞

[ε0(t+ 1)2]

1 + ψ(t)TF (t)ψ(t)
= 0 (34)

||ψ(t)|| is bounded (35)
lim
t→∞

ε0(t+ 1) = 0 (36)

for any initial conditions θ̂(0), ε0(0), F (0), provided that:

H ′(z−1) = H(z−1)− λ2
2
,max

t
[λ2(t)] ≤ λ2 < 2 (37)

is a strictly positive real (SPR) transfer function.
Various choices can be considered for the filter L in order to satisfy the positive real condition.
See [38, 37]. It is important to remark that the positive real condition is strongly influenced by the
presence of the feedback controller and its design. The best performances are in general obtained by
taking L as an estimation of H (see eq.(32)). Relaxation of the positive real condition by averaging
arguments is discussed in [38] and by adding proportional adaptation in [39]. Filtering of the residual
error can also be considered for satisfying the positive real condition, but this will modify the
criterion which is minimized ([40, 39]). Analysis of the algorithms when hypotheses H2 and H3
are violated can be found in [38].

5.4. Use of the Youla- Kučera parametrization for adaptive feedforward disturbance compensation

Since most of the adaptive feedforward vibration (or noise) compensation systems feature
an internal ”positive feedback” coupling between the compensator system and the correlated
disturbance measurement which serves as reference, one may think building a stabilizing controller
for this internal loop to which an additional filter will be added with the objective to enhance the
disturbance attenuation capabilities while preserving the stabilization properties of the controller.
In order to achieve this, instead of a standard IIR feedforward compensator on can use an Youla
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Figure 12. Adaptive feedforward disturbance compensation using Youla-Kučera parametrization

Kučera parametrization of the adaptive feedforward compensator. The central compensator will
assure the stability of the internal positive feedback loop and its performance are enhanced in real-
time by the direct adaptation of the parameters of the Youla-Kučera Q-filter. A block diagram of
such adaptive feedforward compensator is shown in Fig. 12. FIR and IIR Q-filters can be used.
Details of the specific algorithms can be found in [41, 42]. Comparisons between IIR, FIR YK, and
IIR YK adaptive feedforward have been done. The conclusions of these comparison can be briefly
summarized as follows:

• For the same level of performance IIR YK requires the lower number of adjustable parameters;
• IIR YK and FIR YK allow easily the incorporation of an initial stabilizing controller of any

dimension while for IIR feedforward compensator this is more difficult;
• The performance of FIR YK is influenced by the performance of the initial model based

stabilizing controller.

6. SOME EXPERIMENTAL RESULTS - ATTENUATION OF BROAD BAND
DISTURBANCES

6.1. Adaptive feedforward+ fixed feedback attenuation of broad band disturbances

A summary of various results obtained on the system described in Section II will be presented next.
The adaptive feedforward filter structure for all the experiments has been nR = 9, nS = 10 (total
of 20 parameters) and this complexity does not allow to verify the ”perfect matching condition”
(which requires more than 40 parameters). A feedback RS controller has been also introduced to
test the potential improvement in performance.

Table II summarizes the global attenuation results for various configurations. Clearly, hybrid
adaptive feedforward- fixed feedback scheme brings a significant improvement in performance with
respect to adaptive feedforward compensation alone. This can be also seen on the power spectral
densities shown in Figure 1312. A pseudo-random binary sequence (PRBS) excitation on the global
primary path has been considered as the disturbance.

Feedback Feedforward Adaptive Feedback & Feedforward
only only Feedforward Adaptive (H∞)

(H∞) only Feedforward & Feedback
Attenuation [dB] -14.40 -14.70 -16.23 -20.53 -18.42

Table II. Global attenuation for various configurations

12For the adaptive schemes the PSD is evaluated after the adaptation transient has settled.

Copyright c© 2014 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2014)
Prepared using acsauth.cls DOI: 10.1002/acs



20 I. D. LANDAU ET AL.

0 50 100 150 200 250 300 350 400
−80

−70

−60

−50

−40

−30

−20

−10

Frequency [Hz]

P
S

D
 E

s
ti
m

a
te

 [
d
B

]

Power Spectral Density Estimate "Disturbance = PRBS"

 

 

Open loop
Feedback (RS): Attenuation of −14.4079dB
Adapt.Feedforward (Algo III): Attenuation of −16.2312dB
Feedback (RS) + Adapt. Feedforward (Algo III): Attenuation of −20.5362dB

Figure 13. Power spectral densities of the residual acceleration (Disturbance = PRBS).

It is important to point out that the design of a linear feedforward+feedback requires not only the
perfect knowledge of the disturbance characteristics but also of the model of the primary path, while
an adaptive approach does not require these informations. To illustrate the adaptation capabilities
of the algorithms presented, a sinusoidal disturbance of 150Hz has been added to the PRBS
disturbance. Figure 14 shows the power spectral densities in open loop, using an adaptive algorithm
and when the H∞ feedforward compensator which is not designed for this additional disturbance
is used. One can remark that the hybrid adaptive feedforward-feedback scheme introduces a strong
attenuation of the sinusoidal disturbance (larger than 30dB) without affecting other frequencies
(compare with Figure 13) while the model based H∞ feedforward compensator + feedback
controller has not been able to attenuate the sinusoidal disturbance.

Experimental time domain results obtained in open loop and with the hybrid control on the AVC
system described in Section 2 are shown in Fig. 15 [36].
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Figure 14. Power spectral densities when an additional sinusoidal disturbance is added (Disturbance = PRBS
+ sinusoid)
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Figure 15. Real time results obtained with feedback controller and adaptive feedforward Algorithm III .
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The experiments have been carried on by first applying the disturbance in open loop during 50s
and after that closing the loop with the hybrid adaptive feedforward-feedback algorithms.

7. CONCLUSION

Adaptive attenuation of unknown disturbances appears as a well defined field and the results
already available have a clear application impact. The paper has emphasized the advantage of
using: the Youla-Kucera parametrization in the context of feedback and feedforward disturbance
compensation, the stability based re-design of the filters used on the regressor vector and the use of
matrix adaptation gains.
Important problems are nevertheless open and will require important research effort. We will
mention just two:

• Adaptive feedback approach in the context of errors in the model of the secondary path [43].
• Combined adaptive feedforward and adaptive feedback.
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